Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

LLM-Driven Data Generation and a Novel Soft Metric for Evaluating Text-to-SQL in Aviation MRO (2506.13785v1)

Published 11 Jun 2025 in cs.DB and cs.IR

Abstract: The application of LLMs to text-to-SQL tasks promises to democratize data access, particularly in critical industries like aviation Maintenance, Repair, and Operation (MRO). However, progress is hindered by two key challenges: the rigidity of conventional evaluation metrics such as execution accuracy, which offer coarse, binary feedback, and the scarcity of domain-specific evaluation datasets. This paper addresses these gaps. To enable more nuanced assessment, we introduce a novel F1-score-based 'soft' metric that quantifies the informational overlap between generated and ground-truth SQL results. To address data scarcity, we propose an LLM-driven pipeline that synthesizes realistic question-SQL pairs from database schemas. We demonstrate our contributions through an empirical evaluation on an authentic MRO database. Our experiments show that the proposed soft metric provides more insightful performance analysis than strict accuracy, and our data generation technique is effective in creating a domain-specific benchmark. Together, these contributions offer a robust framework for evaluating and advancing text-to-SQL systems in specialized environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.