Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Observability-Aware Active Calibration of Multi-Sensor Extrinsics for Ground Robots via Online Trajectory Optimization (2506.13420v1)

Published 16 Jun 2025 in cs.RO

Abstract: Accurate calibration of sensor extrinsic parameters for ground robotic systems (i.e., relative poses) is crucial for ensuring spatial alignment and achieving high-performance perception. However, existing calibration methods typically require complex and often human-operated processes to collect data. Moreover, most frameworks neglect acoustic sensors, thereby limiting the associated systems' auditory perception capabilities. To alleviate these issues, we propose an observability-aware active calibration method for ground robots with multimodal sensors, including a microphone array, a LiDAR (exteroceptive sensors), and wheel encoders (proprioceptive sensors). Unlike traditional approaches, our method enables active trajectory optimization for online data collection and calibration, contributing to the development of more intelligent robotic systems. Specifically, we leverage the Fisher information matrix (FIM) to quantify parameter observability and adopt its minimum eigenvalue as an optimization metric for trajectory generation via B-spline curves. Through planning and replanning of robot trajectory online, the method enhances the observability of multi-sensor extrinsic parameters. The effectiveness and advantages of our method have been demonstrated through numerical simulations and real-world experiments. For the benefit of the community, we have also open-sourced our code and data at https://github.com/AISLAB-sustech/Multisensor-Calibration.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com