Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RL-Guided MPC for Autonomous Greenhouse Control (2506.13278v1)

Published 16 Jun 2025 in eess.SY and cs.SY

Abstract: The efficient operation of greenhouses is essential for enhancing crop yield while minimizing energy costs. This paper investigates a control strategy that integrates Reinforcement Learning (RL) and Model Predictive Control (MPC) to optimize economic benefits in autonomous greenhouses. Previous research has explored the use of RL and MPC for greenhouse control individually, or by using MPC as the function approximator for the RL agent. This study introduces the RL-Guided MPC framework, where a RL policy is trained and then used to construct a terminal cost and terminal region constraint for the MPC optimization problem. This approach leverages the ability to handle uncertainties of RL with MPC's online optimization to improve overall control performance. The RL-Guided MPC framework is compared with both MPC and RL via numerical simulations. Two scenarios are considered: a deterministic environment and an uncertain environment. Simulation results demonstrate that, in both environments, RL-Guided MPC outperforms both RL and MPC with shorter prediction horizons.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.