Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rethinking Explainability in the Era of Multimodal AI (2506.13060v1)

Published 16 Jun 2025 in cs.AI and cs.LG

Abstract: While multimodal AI systems (models jointly trained on heterogeneous data types such as text, time series, graphs, and images) have become ubiquitous and achieved remarkable performance across high-stakes applications, transparent and accurate explanation algorithms are crucial for their safe deployment and ensure user trust. However, most existing explainability techniques remain unimodal, generating modality-specific feature attributions, concepts, or circuit traces in isolation and thus failing to capture cross-modal interactions. This paper argues that such unimodal explanations systematically misrepresent and fail to capture the cross-modal influence that drives multimodal model decisions, and the community should stop relying on them for interpreting multimodal models. To support our position, we outline key principles for multimodal explanations grounded in modality: Granger-style modality influence (controlled ablations to quantify how removing one modality changes the explanation for another), Synergistic faithfulness (explanations capture the model's predictive power when modalities are combined), and Unified stability (explanations remain consistent under small, cross-modal perturbations). This targeted shift to multimodal explanations will help the community uncover hidden shortcuts, mitigate modality bias, improve model reliability, and enhance safety in high-stakes settings where incomplete explanations can have serious consequences.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.