Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space-time fractional stochastic partial differential equations driven by Lévy white noise (2506.12834v1)

Published 15 Jun 2025 in math.PR

Abstract: This paper is concerned with the following space-time fractional stochastic nonlinear partial differential equation \begin{equation*} \left(\partial_t{\beta}+\frac{\nu}{2}\left(-\Delta\right){\alpha / 2}\right) u=I_{t}{\gamma}\Big[ f(t,x,u)-\sum_{i=1}{d} \frac{\partial}{\partial x_i} q_i(t,x,u)+ \sigma(t,x,u) F_{t,x}\Big] \end{equation*} for a random field $u(t,x):[0,\infty)\times\mathbb{R}d \mapsto\mathbb{R}$, where $\alpha>0, \beta\in(0,2), \gamma\ge0, \nu>0, F_{t,x}$ is a L\'evy space-time white noise, $I_{t}\gamma$ stands for the Riemann-Liouville integral in time, and $f,q_i,\sigma:[0,\infty)\times\mathbb{R}d\times\mathbb{R} \mapsto\mathbb{R}$ are measurable functions. Under suitable polynomial growth conditions, we establish the existence and uniqueness of $L2(\mathbb{R}d)$-valued local solutions when the L\'evy white noise $F_{t,x}$ contains Gaussian noise component. Furthermore, for $p\in[1,2]$, we derive the existence and uniqueness of $Lp(\mathbb{R}d)$-valued local solutions for the equation driven by pure jump L\'evy white noise. Finally, we obtain certain stronger conditions for the existence and uniqueness of global solutions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com