Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains (1512.09298v2)

Published 31 Dec 2015 in math.PR, math-ph, math.AP, and math.MP

Abstract: In this paper we study non-linear noise excitation for the following class of space-time fractional stochastic equations in bounded domains: $$\partial\beta_tu_t(x)=-\nu(-\Delta){\alpha/2} u_t(x)+I{1-\beta}_t[\lambda \sigma(u)\stackrel{\cdot}{F}(t,x)]$$ in $(d+1)$ dimensions, where $\nu>0, \beta\in (0,1)$, $\alpha\in (0,2]$. The operator $\partial\beta_t$ is the Caputo fractional derivative, $-(-\Delta){\alpha/2} $ is the generator of an isotropic stable process and $I{1-\beta}_t$ is the fractional integral operator. The forcing noise denoted by $\stackrel{\cdot}{F}(t,x)$ is a Gaussian noise. The multiplicative non-linearity $\sigma:\RR{R}\to\RR{R}$ is assumed to be globally Lipschitz continuous. These equations were recently introduced by Mijena and Nane(J. Mijena and E. Nane. Space time fractional stochastic partial differential equations. Stochastic Process Appl. 125 (2015), no. 9, 3301--3326). We first study the existence and uniqueness of the solution of these equations {and} under suitable conditions on the initial function, we {also} study the asymptotic behavior of the solution with respect to the parameter $\lambda$. In particular, our results are significant extensions of those in Foondun et al (M. Foondun, K. Tian and W. Liu. On some properties of a class of fractional stochastic equations. Preprint available at arxiv.org 1404.6791v1.), Foondun and Khoshnevisan (M. Foondun and D. Khoshnevisan. Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab. 14 (2009), no. 21, 548--568.), Nane and Mijena (J. Mijena and E. Nane. Space time fractional stochastic partial differential equations. Stochastic Process Appl. 125 (2015), no. 9, 3301--3326; J. B. Mijena, and E.Nane. Intermittence and time fractional partial differential equations. Submitted. 2014).

Summary

We haven't generated a summary for this paper yet.