Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Sharp inequalities and asymptotics for polyharmonic eigenvalues (2506.12791v1)

Published 15 Jun 2025 in math.AP and math.SP

Abstract: We study eigenvalues of general scalar Dirichlet polyharmonic problems in domains in $\mathbb R{d}$. We first prove a number of inequalities satisfied by the eigenvalues on general domains, depending on the relations between the orders of the operators involved. We then obtain several estimates for these eigenvalues, yielding their growth as a function of these orders. For the problem in the ball we derive the general form of eigenfunctions together with the equations satisfied by the corresponding eigenvalues, and obtain several bounds for the first eigenvalue. In the case of the polyharmonic operator of order $2m$ we derive precise bounds yielding the first two terms in the asymptotic expansion for the first normalised eigenvalue as $m$ grows to infinity. These results allow us to obtain the order of growth for the $k{\rm th}$ polyharmonic eigenvalue on general domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.