Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Note on Follow-the-Perturbed-Leader in Combinatorial Semi-Bandit Problems (2506.12490v1)

Published 14 Jun 2025 in cs.LG and stat.ML

Abstract: This paper studies the optimality and complexity of Follow-the-Perturbed-Leader (FTPL) policy in size-invariant combinatorial semi-bandit problems. Recently, Honda et al. (2023) and Lee et al. (2024) showed that FTPL achieves Best-of-Both-Worlds (BOBW) optimality in standard multi-armed bandit problems with Fr\'{e}chet-type distributions. However, the optimality of FTPL in combinatorial semi-bandit problems remains unclear. In this paper, we consider the regret bound of FTPL with geometric resampling (GR) in size-invariant semi-bandit setting, showing that FTPL respectively achieves $O\left(\sqrt{m2 d\frac{1}{\alpha}T}+\sqrt{mdT}\right)$ regret with Fr\'{e}chet distributions, and the best possible regret bound of $O\left(\sqrt{mdT}\right)$ with Pareto distributions in adversarial setting. Furthermore, we extend the conditional geometric resampling (CGR) to size-invariant semi-bandit setting, which reduces the computational complexity from $O(d2)$ of original GR to $O\left(md\left(\log(d/m)+1\right)\right)$ without sacrificing the regret performance of FTPL.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)