Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Enhancing Large Language Models for Mobility Analytics with Semantic Location Tokenization (2506.11109v1)

Published 8 Jun 2025 in cs.CL and cs.AI

Abstract: The widespread adoption of location-based services has led to the generation of vast amounts of mobility data, providing significant opportunities to model user movement dynamics within urban environments. Recent advancements have focused on adapting LLMs for mobility analytics. However, existing methods face two primary limitations: inadequate semantic representation of locations (i.e., discrete IDs) and insufficient modeling of mobility signals within LLMs (i.e., single templated instruction fine-tuning). To address these issues, we propose QT-Mob, a novel framework that significantly enhances LLMs for mobility analytics. QT-Mob introduces a location tokenization module that learns compact, semantically rich tokens to represent locations, preserving contextual information while ensuring compatibility with LLMs. Furthermore, QT-Mob incorporates a series of complementary fine-tuning objectives that align the learned tokens with the internal representations in LLMs, improving the model's comprehension of sequential movement patterns and location semantics. The proposed QT-Mob framework not only enhances LLMs' ability to interpret mobility data but also provides a more generalizable approach for various mobility analytics tasks. Experiments on three real-world dataset demonstrate the superior performance in both next-location prediction and mobility recovery tasks, outperforming existing deep learning and LLM-based methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run custom paper prompts using GPT-5 on this paper.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.