Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

PRISM: A Transformer-based Language Model of Structured Clinical Event Data (2506.11082v1)

Published 4 Jun 2025 in cs.CL and cs.AI

Abstract: We introduce PRISM (Predictive Reasoning in Sequential Medicine), a transformer-based architecture designed to model the sequential progression of clinical decision-making processes. Unlike traditional approaches that rely on isolated diagnostic classification, PRISM frames clinical trajectories as tokenized sequences of events - including diagnostic tests, laboratory results, and diagnoses - and learns to predict the most probable next steps in the patient diagnostic journey. Leveraging a large custom clinical vocabulary and an autoregressive training objective, PRISM demonstrates the ability to capture complex dependencies across longitudinal patient timelines. Experimental results show substantial improvements over random baselines in next-token prediction tasks, with generated sequences reflecting realistic diagnostic pathways, laboratory result progressions, and clinician ordering behaviors. These findings highlight the feasibility of applying generative LLMing techniques to structured medical event data, enabling applications in clinical decision support, simulation, and education. PRISM establishes a foundation for future advancements in sequence-based healthcare modeling, bridging the gap between machine learning architectures and real-world diagnostic reasoning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube