Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structure and asymptotic preserving deep neural surrogates for uncertainty quantification in multiscale kinetic equations (2506.10636v1)

Published 12 Jun 2025 in math.NA, cs.LG, and cs.NA

Abstract: The high dimensionality of kinetic equations with stochastic parameters poses major computational challenges for uncertainty quantification (UQ). Traditional Monte Carlo (MC) sampling methods, while widely used, suffer from slow convergence and high variance, which become increasingly severe as the dimensionality of the parameter space grows. To accelerate MC sampling, we adopt a multiscale control variates strategy that leverages low-fidelity solutions from simplified kinetic models to reduce variance. To further improve sampling efficiency and preserve the underlying physics, we introduce surrogate models based on structure and asymptotic preserving neural networks (SAPNNs). These deep neural networks are specifically designed to satisfy key physical properties, including positivity, conservation laws, entropy dissipation, and asymptotic limits. By training the SAPNNs on low-fidelity models and enriching them with selected high-fidelity samples from the full Boltzmann equation, our method achieves significant variance reduction while maintaining physical consistency and asymptotic accuracy. The proposed methodology enables efficient large-scale prediction in kinetic UQ and is validated across both homogeneous and nonhomogeneous multiscale regimes. Numerical results demonstrate improved accuracy and computational efficiency compared to standard MC techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.