A Study on Speech Assessment with Visual Cues (2506.09549v1)
Abstract: Non-intrusive assessment of speech quality and intelligibility is essential when clean reference signals are unavailable. In this work, we propose a multimodal framework that integrates audio features and visual cues to predict PESQ and STOI scores. It employs a dual-branch architecture, where spectral features are extracted using STFT, and visual embeddings are obtained via a visual encoder. These features are then fused and processed by a CNN-BLSTM with attention, followed by multi-task learning to simultaneously predict PESQ and STOI. Evaluations on the LRS3-TED dataset, augmented with noise from the DEMAND corpus, show that our model outperforms the audio-only baseline. Under seen noise conditions, it improves LCC by 9.61% (0.8397->0.9205) for PESQ and 11.47% (0.7403->0.8253) for STOI. These results highlight the effectiveness of incorporating visual cues in enhancing the accuracy of non-intrusive speech assessment.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.