Optimizing Sparse SYK (2506.09037v1)
Abstract: Finding the ground state of strongly-interacting fermionic systems is often the prerequisite for fully understanding both quantum chemistry and condensed matter systems. The Sachdev--Ye--Kitaev (SYK) model is a representative example of such a system; it is particularly interesting not only due to the existence of efficient quantum algorithms preparing approximations to the ground state such as Hastings--O'Donnell (STOC 2022), but also known no-go results for many classical ansatzes in preparing low-energy states. However, this quantum-classical separation is known to \emph{not} persist when the SYK model is sufficiently sparsified, i.e., when terms in the model are discarded with probability $1-p$, where $p=\Theta(1/n3)$ and $n$ is the system size. This raises the question of how robust the quantum and classical complexities of the SYK model are to sparsification. In this work we initiate the study of the sparse SYK model where $p \in [\Theta(1/n3),1]$. We show there indeed exists a certain robustness of sparsification. First, we prove that the quantum algorithm of Hastings--O'Donnell for $p=1$ still achieves a constant-factor approximation to the ground energy when $p\geq\Omega(\log n/n)$. Additionally, we prove that with high probability, Gaussian states cannot achieve better than a $O(\sqrt{\log n/pn})$-factor approximation to the true ground state energy of sparse SYK. This is done through a general classical circuit complexity lower-bound of $\Omega(pn3)$ for any quantum state achieving a constant-factor approximation. Combined, these show a provable separation between classical algorithms outputting Gaussian states and efficient quantum algorithms for the goal of finding approximate sparse SYK ground states when $p \geq \Omega(\log n/n)$, extending the analogous $p=1$ result of Hastings--O'Donnell.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.