Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CoQMoE: Co-Designed Quantization and Computation Orchestration for Mixture-of-Experts Vision Transformer on FPGA (2506.08496v1)

Published 10 Jun 2025 in cs.AR

Abstract: Vision Transformers (ViTs) exhibit superior performance in computer vision tasks but face deployment challenges on resource-constrained devices due to high computational/memory demands. While Mixture-of-Experts Vision Transformers (MoE-ViTs) mitigate this through a scalable architecture with sub-linear computational growth, their hardware implementation on FPGAs remains constrained by resource limitations. This paper proposes a novel accelerator for efficiently implementing quantized MoE models on FPGAs through two key innovations: (1) A dual-stage quantization scheme combining precision-preserving complex quantizers with hardware-friendly simplified quantizers via scale reparameterization, with only 0.28 $\%$ accuracy loss compared to full precision; (2) A resource-aware accelerator architecture featuring latency-optimized streaming attention kernels and reusable linear operators, effectively balancing performance and resource consumption. Experimental results demonstrate that our accelerator achieves nearly 155 frames per second, a 5.35$\times$ improvement in throughput, and over $80\%$ energy reduction compared to state-of-the-art (SOTA) FPGA MoE accelerators, while maintaining $<1\%$ accuracy loss across vision benchmarks. Our implementation is available at https://github.com/DJ000011/CoQMoE.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com