Protein folding with an all-to-all trapped-ion quantum computer (2506.07866v2)
Abstract: We experimentally demonstrate that the bias-field digitized counterdiabatic quantum optimization (BF-DCQO) algorithm, implemented on IonQ's fully connected trapped-ion quantum processors, offers an efficient approach to solving dense higher-order unconstrained binary optimization (HUBO) problems. Specifically, we tackle protein folding on a tetrahedral lattice for up to 12 amino acids, representing the largest quantum hardware implementations of protein folding problems reported to date. Additionally, we address MAX 4-SAT instances at the computational phase transition and fully connected spin-glass problems using all 36 available qubits. Across all considered cases, our method consistently achieves optimal solutions, highlighting the powerful synergy between non-variational quantum optimization approaches and the intrinsic all-to-all connectivity of trapped-ion architectures. Given the expected scalability of trapped-ion quantum systems, BF-DCQO represents a promising pathway toward practical quantum advantage for dense HUBO problems with significant industrial and scientific relevance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.