Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Discriminant Analysis with Gradient Optimization on Covariance Inverse (2506.06845v1)

Published 7 Jun 2025 in stat.CO and stat.ML

Abstract: Linear discriminant analysis (LDA) is a fundamental method in statistical pattern recognition and classification, achieving Bayes optimality under Gaussian assumptions. However, it is well-known that classical LDA may struggle in high-dimensional settings due to instability in covariance estimation. In this work, we propose LDA with gradient optimization (LDA-GO), a new approach that directly optimizes the inverse covariance matrix via gradient descent. The algorithm parametrizes the inverse covariance matrix through Cholesky factorization, incorporates a low-rank extension to reduce computational complexity, and considers a multiple-initialization strategy, including identity initialization and warm-starting from the classical LDA estimates. The effectiveness of LDA-GO is demonstrated through extensive multivariate simulations and real-data experiments.

Summary

We haven't generated a summary for this paper yet.