Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularized Linear Discriminant Analysis Using a Nonlinear Covariance Matrix Estimator (2401.17760v2)

Published 31 Jan 2024 in stat.ML, cs.LG, and eess.SP

Abstract: Linear discriminant analysis (LDA) is a widely used technique for data classification. The method offers adequate performance in many classification problems, but it becomes inefficient when the data covariance matrix is ill-conditioned. This often occurs when the feature space's dimensionality is higher than or comparable to the training data size. Regularized LDA (RLDA) methods based on regularized linear estimators of the data covariance matrix have been proposed to cope with such a situation. The performance of RLDA methods is well studied, with optimal regularization schemes already proposed. In this paper, we investigate the capability of a positive semidefinite ridge-type estimator of the inverse covariance matrix that coincides with a nonlinear (NL) covariance matrix estimator. The estimator is derived by reformulating the score function of the optimal classifier utilizing linear estimation methods, which eventually results in the proposed NL-RLDA classifier. We derive asymptotic and consistent estimators of the proposed technique's misclassification rate under the assumptions of a double-asymptotic regime and multivariate Gaussian model for the classes. The consistent estimator, coupled with a one-dimensional grid search, is used to set the value of the regularization parameter required for the proposed NL-RLDA classifier. Performance evaluations based on both synthetic and real data demonstrate the effectiveness of the proposed classifier. The proposed technique outperforms state-of-art methods over multiple datasets. When compared to state-of-the-art methods across various datasets, the proposed technique exhibits superior performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.
  2. C. Chen, Z.-M. Zhang, M.-L. Ouyang, X. Liu, L. Yi, Y.-Z. Liang, and C.-P. Zhang, “Shrunken centroids regularized discriminant analysis as a promising strategy for metabolomics data exploration,” Journal of Chemometrics, vol. 29, no. 3, pp. 154–164, 2015.
  3. X. Jin, M. Zhao, T. W. Chow, and M. Pecht, “Motor bearing fault diagnosis using trace ratio linear discriminant analysis,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2441–2451, 2013.
  4. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces: Recognition using class specific linear projection,” IEEE Transactions on pattern analysis and machine intelligence, vol. 19, no. 7, pp. 711–720, 1997.
  5. Q. Wang, Z. Meng, and X. Li, “Locality adaptive discriminant analysis for spectral–spatial classification of hyperspectral images,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 11, pp. 2077–2081, 2017.
  6. T. W. Anderson, “An introduction to multivariate statistical analysis,” Wiley New York, Tech. Rep., 1962.
  7. K. Elkhalil, A. Kammoun, R. Couillet, T. Y. Al-Naffouri, and M. Alouini, “A large dimensional study of regularized discriminant analysis,” IEEE Transactions on Signal Processing, vol. 68, pp. 2464–2479, 2020.
  8. T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of hyperspectral images with regularized linear discriminant analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 862–873, 2009.
  9. O. Ledoit and M. Wolf, “A well-conditioned estimator for large-dimensional covariance matrices,” Journal of multivariate analysis, vol. 88, no. 2, pp. 365–411, 2004.
  10. J. Schäfer and K. Strimmer, “A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics,” Statistical applications in genetics and molecular biology, vol. 4, no. 1, 2005.
  11. E. Ollila and E. Raninen, “Optimal shrinkage covariance matrix estimation under random sampling from elliptical distributions,” IEEE Transactions on Signal Processing, vol. 67, no. 10, pp. 2707–2719, 2019.
  12. Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero, “Shrinkage algorithms for mmse covariance estimation,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5016–5029, 2010.
  13. P. Stoica, J. Li, X. Zhu, and J. R. Guerci, “On using a priori knowledge in space-time adaptive processing,” IEEE transactions on signal processing, vol. 56, no. 6, pp. 2598–2602, 2008.
  14. T. J. Fisher and X. Sun, “Improved stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix,” Computational Statistics & Data Analysis, vol. 55, no. 5, pp. 1909–1918, 2011.
  15. Z. Halbe, M. Bortman, and M. Aladjem, “Regularized mixture density estimation with an analytical setting of shrinkage intensities,” IEEE transactions on neural networks and learning systems, vol. 24, no. 3, pp. 460–470, 2013.
  16. X. Chen, Z. J. Wang, and M. J. McKeown, “Shrinkage-to-tapering estimation of large covariance matrices,” IEEE Transactions on Signal Processing, vol. 60, no. 11, pp. 5640–5656, 2012.
  17. J. H. Friedman, “Regularized discriminant analysis,” Journal of the American statistical association, vol. 84, no. 405, pp. 165–175, 1989.
  18. T. Lancewicki and M. Aladjem, “Multi-target shrinkage estimation for covariance matrices,” IEEE Transactions on Signal Processing, vol. 62, no. 24, pp. 6380–6390, 2014.
  19. B. Zhang, J. Zhou, and J. Li, “Improved covariance matrix estimators by multi-penalty regularization,” in 2019 22th International Conference on Information Fusion (FUSION).   IEEE, 2019, pp. 1–7.
  20. E. Raninen, D. E. Tyler, and E. Ollila, “Linear pooling of sample covariance matrices,” IEEE Transactions on Signal Processing, 2021.
  21. A. Horel, “Applications of ridge analysis to regression problems,” Chem. Eng. Progress., vol. 58, pp. 54–59, 1962.
  22. P. J. Di Pillo, “The application of bias to discriminant analysis,” Communications in Statistics-Theory and Methods, vol. 5, no. 9, pp. 843–854, 1976.
  23. O. Ledoit and M. Wolf, “Nonlinear shrinkage estimation of large-dimensional covariance matrices,” The Annals of Statistics, vol. 40, no. 2, pp. 1024–1060, 2012.
  24. ——, “Spectrum estimation: A unified framework for covariance matrix estimation and pca in large dimensions,” Journal of Multivariate Analysis, vol. 139, pp. 360–384, 2015.
  25. ——, “Optimal estimation of a large-dimensional covariance matrix under stein’s loss,” Bernoulli, vol. 24, no. 4B, pp. 3791–3832, 2018.
  26. ——, “Analytical nonlinear shrinkage of large-dimensional covariance matrices,” The Annals of Statistics, vol. 48, no. 5, pp. 3043–3065, 2020.
  27. ——, “The power of (non-) linear shrinking: a review and guide to covariance matrix estimation,” University of Zurich, Department of Economics, Working Paper, no. 323, 2020.
  28. K. M. Abadir, W. Distaso, and F. Žikeš, “Design-free estimation of variance matrices,” Journal of Econometrics, vol. 181, no. 2, pp. 165–180, 2014.
  29. M. O. Kuismin and M. J. Sillanpää, “Estimation of covariance and precision matrix, network structure, and a view toward systems biology,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 9, no. 6, p. e1415, 2017.
  30. X. Kang and X. Deng, “An improved modified cholesky decomposition approach for precision matrix estimation,” Journal of Statistical Computation and Simulation, vol. 90, no. 3, pp. 443–464, 2020.
  31. A. E. Bilgrau, C. F. Peeters, P. S. Eriksen, M. Bøgsted, and W. N. Van Wieringen, “Targeted fused ridge estimation of inverse covariance matrices from multiple high-dimensional data classes,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 946–997, 2020.
  32. W. N. van Wieringen, “The generalized ridge estimator of the inverse covariance matrix,” Journal of Computational and Graphical Statistics, vol. 28, no. 4, pp. 932–942, 2019.
  33. W. N. Van Wieringen and C. F. Peeters, “Ridge estimation of inverse covariance matrices from high-dimensional data,” Computational Statistics & Data Analysis, vol. 103, pp. 284–303, 2016.
  34. M. Kuismin, J. Kemppainen, and M. Sillanpää, “Precision matrix estimation with rope,” Journal of Computational and Graphical Statistics, vol. 26, no. 3, pp. 682–694, 2017.
  35. N. Auguin, D. Morales-Jimenez, and M. R. McKay, “Large-dimensional characterization of robust linear discriminant analysis,” IEEE Transactions on Signal Processing, vol. 69, pp. 2625–2638, 2021.
  36. A. Zollanvari and E. R. Dougherty, “Generalized consistent error estimator of linear discriminant analysis,” IEEE Transactions on Signal Processing, vol. 63, no. 11, pp. 2804–2814, 2015.
  37. Y. Guo, T. Hastie, and R. Tibshirani, “Regularized linear discriminant analysis and its application in microarrays,” Biostatistics, vol. 8, no. 1, pp. 86–100, 2007.
  38. S. Chandrasekaran, G. Golub, M. Gu, and A. H. Sayed, “Parameter estimation in the presence of bounded modeling errors,” IEEE Signal Processing Letters, vol. 4, no. 7, pp. 195–197, 1997.
  39. A. Muller and M. Debbah, “Random matrix theory tutorial. introduction to deterministic equivalents,” Traitement du signal, vol. 33, no. 2-3, pp. 223–248, 2016.
  40. M. Suliman, T. Ballal, A. Kammoun, and T. Y. Al-Naffouri, “Constrained perturbation regularization approach for signal estimation using random matrix theory,” IEEE Signal Processing Letters, vol. 23, no. 12, pp. 1727–1731, 2016.
  41. F. Benaych-Georges and R. Couillet, “Spectral analysis of the gram matrix of mixture models,” ESAIM: Probability and Statistics, vol. 20, pp. 217–237, 2016.
  42. D. Bakir, A. P. James, and A. Zollanvari, “An efficient method to estimate the optimum regularization parameter in rlda,” Bioinformatics, vol. 32, no. 22, pp. 3461–3468, 2016.
  43. E. Ollila and E. Raninen. Matlab regularizedscm toolbox version 1.0. [Online]. Available: http://users.spa.aalto.fi/esollila/regscm/,
  44. M. N. Tabassum and E. Ollila, “Compressive regularized discriminant analysis of high-dimensional data with applications to microarray studies,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2018, pp. 4204–4208.
  45. G. J. McLachlan, “Mahalanobis distance,” Resonance, vol. 4, no. 6, pp. 20–26, 1999.
  46. T. Hastie, A. Buja, and R. Tibshirani, “Penalized discriminant analysis,” The Annals of Statistics, pp. 73–102, 1995.
  47. Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-propagation network,” in Proceedings of the 2nd International Conference on Neural Information Processing Systems, 1989, pp. 396–404.
  48. P. J. Grother, “Nist special database 19 handprinted forms and characters database,” National Institute of Standards and Technology, 1995.
  49. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  50. P. Mesejo and D. Pizarro, “Gastrointestinal Lesions in Regular Colonoscopy,” UCI Machine Learning Repository, 2016, DOI: https://doi.org/10.24432/C5V02D.
  51. F. Rubio, X. Mestre, and D. P. Palomar, “Performance analysis and optimal selection of large minimum variance portfolios under estimation risk,” IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 4, pp. 337–350, 2012.
  52. F. Rubio and X. Mestre, “Consistent reduced-rank lmmse estimation with a limited number of samples per observation dimension,” IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 2889–2902, 2009.
  53. Q. Li, P. de Kerret, D. Gesbert, and N. Gresset, “Robust regularized zf in cooperative broadcast channel under distributed csit,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1845–1860, 2019.
  54. L. B. Niyazi, A. Kammoun, H. Dahrouj, M.-S. Alouini, and T. Y. Al-Naffouri, “Asymptotic analysis of an ensemble of randomly projected linear discriminants,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 3, pp. 914–930, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Maaz Mahadi (2 papers)
  2. Tarig Ballal (24 papers)
  3. Muhammad Moinuddin (12 papers)
  4. Tareq Y. Al-Naffouri (164 papers)
  5. Ubaid M. Al-Saggaf (3 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets