A Framework for Controllable Multi-objective Learning with Annealed Stein Variational Hypernetworks (2506.06715v2)
Abstract: Pareto Set Learning (PSL) is popular as an efficient approach to obtaining the complete optimal solution in Multi-objective Learning (MOL). A set of optimal solutions approximates the Pareto set, and its mapping is a set of dense points in the Pareto front in objective space. However, some current methods face a challenge: how to make the Pareto solution is diverse while maximizing the hypervolume value. In this paper, we propose a novel method to address this challenge, which employs Stein Variational Gradient Descent (SVGD) to approximate the entire Pareto set. SVGD pushes a set of particles towards the Pareto set by applying a form of functional gradient descent, which helps to converge and diversify optimal solutions. Additionally, we employ diverse gradient direction strategies to thoroughly investigate a unified framework for SVGD in multi-objective optimization and adapt this framework with an annealing schedule to promote stability. We introduce our method, SVH-MOL, and validate its effectiveness through extensive experiments on multi-objective problems and multi-task learning, demonstrating its superior performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run custom paper prompts using GPT-5 on this paper.