Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Vision-QRWKV: Exploring Quantum-Enhanced RWKV Models for Image Classification (2506.06633v2)

Published 7 Jun 2025 in cs.LG and cs.CV

Abstract: Recent advancements in quantum machine learning have shown promise in enhancing classical neural network architectures, particularly in domains involving complex, high-dimensional data. Building upon prior work in temporal sequence modeling, this paper introduces Vision-QRWKV, a hybrid quantum-classical extension of the Receptance Weighted Key Value (RWKV) architecture, applied for the first time to image classification tasks. By integrating a variational quantum circuit (VQC) into the channel mixing component of RWKV, our model aims to improve nonlinear feature transformation and enhance the expressive capacity of visual representations. We evaluate both classical and quantum RWKV models on a diverse collection of 14 medical and standard image classification benchmarks, including MedMNIST datasets, MNIST, and FashionMNIST. Our results demonstrate that the quantum-enhanced model outperforms its classical counterpart on a majority of datasets, particularly those with subtle or noisy class distinctions (e.g., ChestMNIST, RetinaMNIST, BloodMNIST). This study represents the first systematic application of quantum-enhanced RWKV in the visual domain, offering insights into the architectural trade-offs and future potential of quantum models for lightweight and efficient vision tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)