Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

LT-PINN: Lagrangian Topology-conscious Physics-informed Neural Network for Boundary-focused Engineering Optimization (2506.06300v3)

Published 19 May 2025 in cs.LG and physics.comp-ph

Abstract: Physics-informed neural networks (PINNs) have emerged as a powerful meshless tool for topology optimization, capable of simultaneously determining optimal topologies and physical solutions. However, conventional PINNs rely on density-based topology descriptions, which necessitate manual interpolation and limit their applicability to complex geometries. To address this, we propose Lagrangian topology-conscious PINNs (LT-PINNs), a novel framework for boundary-focused engineering optimization. By parameterizing the control variables of topology boundary curves as learnable parameters, LT-PINNs eliminate the need for manual interpolation and enable precise boundary determination. We further introduce specialized boundary condition loss function and topology loss function to ensure sharp and accurate boundary representations, even for intricate topologies. The accuracy and robustness of LT-PINNs are validated via two types of partial differential equations (PDEs), including elastic equation with Dirichlet boundary conditions and Laplace's equation with Neumann boundary conditions. Furthermore, we demonstrate effectiveness of LT-PINNs on more complex time-dependent and time-independent flow problems without relying on measurement data, and showcase their engineering application potential in flow velocity rearrangement, transforming a uniform upstream velocity into a sine-shaped downstream profile. The results demonstrate (1) LT-PINNs achieve substantial reductions in relative L2 errors compared with the state-of-art density topology-oriented PINNs (DT-PINNs), (2) LT-PINNs can handle arbitrary boundary conditions, making them suitable for a wide range of PDEs, and (3) LT-PINNs can infer clear topology boundaries without manual interpolation, especially for complex topologies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets