Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Neural Diarization through Speaker Attribute Attractors and Local Dependency Modeling (2506.05593v1)

Published 5 Jun 2025 in cs.SD, cs.AI, and eess.AS

Abstract: In recent years, end-to-end approaches have made notable progress in addressing the challenge of speaker diarization, which involves segmenting and identifying speakers in multi-talker recordings. One such approach, Encoder-Decoder Attractors (EDA), has been proposed to handle variable speaker counts as well as better guide the network during training. In this study, we extend the attractor paradigm by moving beyond direct speaker modeling and instead focus on representing more detailed `speaker attributes' through a multi-stage process of intermediate representations. Additionally, we enhance the architecture by replacing transformers with conformers, a convolution-augmented transformer, to model local dependencies. Experiments demonstrate improved diarization performance on the CALLHOME dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.