Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

LLMs Can Compensate for Deficiencies in Visual Representations (2506.05439v1)

Published 5 Jun 2025 in cs.CV, cs.AI, and cs.CL

Abstract: Many vision-LLMs (VLMs) that prove very effective at a range of multimodal task, build on CLIP-based vision encoders, which are known to have various limitations. We investigate the hypothesis that the strong language backbone in VLMs compensates for possibly weak visual features by contextualizing or enriching them. Using three CLIP-based VLMs, we perform controlled self-attention ablations on a carefully designed probing task. Our findings show that despite known limitations, CLIP visual representations offer ready-to-read semantic information to the language decoder. However, in scenarios of reduced contextualization in the visual representations, the language decoder can largely compensate for the deficiency and recover performance. This suggests a dynamic division of labor in VLMs and motivates future architectures that offload more visual processing to the language decoder.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.