Towards Language-Augmented Multi-Agent Deep Reinforcement Learning (2506.05236v1)
Abstract: Communication is a fundamental aspect of coordinated behavior in multi-agent reinforcement learning. Yet, most prior works in this field have focused on emergent communication protocols developed from scratch, often resulting in inefficient or non-interpretable systems. Inspired by the role of language in natural intelligence, we investigate how grounding agents in a human-defined language can improve learning and coordination of multiple embodied agents. We propose a framework in which agents are trained not only to act but also to produce and interpret natural language descriptions of their observations. This language-augmented learning serves a dual role: enabling explicit communication between agents and guiding representation learning. We demonstrate that agents trained with our method outperform traditional emergent communication baselines across various tasks. Our analysis reveals that language grounding leads to more informative internal representations, better generalization to new partners, and improved capability for human-agent interaction. These findings demonstrate the effectiveness of integrating structured language into multi-agent learning and open avenues for more interpretable and capable multi-agent systems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.