Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Structure-Aware Radar-Camera Depth Estimation (2506.05008v3)

Published 5 Jun 2025 in cs.CV

Abstract: Radar has gained much attention in autonomous driving due to its accessibility and robustness. However, its standalone application for depth perception is constrained by issues of sparsity and noise. Radar-camera depth estimation offers a more promising complementary solution. Despite significant progress, current approaches fail to produce satisfactory dense depth maps, due to the unsatisfactory processing of the sparse and noisy radar data. They constrain the regions of interest for radar points in rigid rectangular regions, which may introduce unexpected errors and confusions. To address these issues, we develop a structure-aware strategy for radar depth enhancement, which provides more targeted regions of interest by leveraging the structural priors of RGB images. Furthermore, we design a Multi-Scale Structure Guided Network to enhance radar features and preserve detailed structures, achieving accurate and structure-detailed dense metric depth estimation. Building on these, we propose a structure-aware radar-camera depth estimation framework, named SA-RCD. Extensive experiments demonstrate that our SA-RCD achieves state-of-the-art performance on the nuScenes dataset. Our code will be available at https://github.com/FreyZhangYeh/SA-RCD.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube