Guided Speculative Inference for Efficient Test-Time Alignment of LLMs (2506.04118v1)
Abstract: We propose Guided Speculative Inference (GSI), a novel algorithm for efficient reward-guided decoding in LLMs. GSI combines soft best-of-$n$ test-time scaling with a reward model $r(x,y)$ and speculative samples from a small auxiliary model $\pi_S(y\mid x)$. We provably approximate the optimal tilted policy $\pi_{\beta,B}(y\mid x) \propto \pi_B(y\mid x)\exp(\beta\,r(x,y))$ of soft best-of-$n$ under the primary model $\pi_B$. We derive a theoretical bound on the KL divergence between our induced distribution and the optimal policy. In experiments on reasoning benchmarks (MATH500, OlympiadBench, Minerva Math), our method achieves higher accuracy than standard soft best-of-$n$ with $\pi_S$ and reward-guided speculative decoding (Liao et al., 2025), and in certain settings even outperforms soft best-of-$n$ with $\pi_B$. The code is available at https://github.com/j-geuter/GSI .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.