Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

KG-BiLM: Knowledge Graph Embedding via Bidirectional Language Models (2506.03576v1)

Published 4 Jun 2025 in cs.CL and cs.AI

Abstract: Recent advances in knowledge representation learning (KRL) highlight the urgent necessity to unify symbolic knowledge graphs (KGs) with LMs for richer semantic understanding. However, existing approaches typically prioritize either graph structure or textual semantics, leaving a gap: a unified framework that simultaneously captures global KG connectivity, nuanced linguistic context, and discriminative reasoning semantics. To bridge this gap, we introduce KG-BiLM, a bidirectional LM framework that fuses structural cues from KGs with the semantic expressiveness of generative transformers. KG-BiLM incorporates three key components: (i) Bidirectional Knowledge Attention, which removes the causal mask to enable full interaction among all tokens and entities; (ii) Knowledge-Masked Prediction, which encourages the model to leverage both local semantic contexts and global graph connectivity; and (iii) Contrastive Graph Semantic Aggregation, which preserves KG structure via contrastive alignment of sampled sub-graph representations. Extensive experiments on standard benchmarks demonstrate that KG-BiLM outperforms strong baselines in link prediction, especially on large-scale graphs with complex multi-hop relations - validating its effectiveness in unifying structural information and textual semantics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.