A Learned Cost Model-based Cross-engine Optimizer for SQL Workloads (2506.02802v1)
Abstract: Lakehouse systems enable the same data to be queried with multiple execution engines. However, selecting the engine best suited to run a SQL query still requires a priori knowledge of the query computational requirements and an engine capability, a complex and manual task that only becomes more difficult with the emergence of new engines and workloads. In this paper, we address this limitation by proposing a cross-engine optimizer that can automate engine selection for diverse SQL queries through a learned cost model. Optimized with hints, a query plan is used for query cost prediction and routing. Cost prediction is formulated as a multi-task learning problem, and multiple predictor heads, corresponding to different engines and provisionings, are used in the model architecture. This eliminates the need to train engine-specific models and allows the flexible addition of new engines at a minimal fine-tuning cost. Results on various databases and engines show that using a query optimized logical plan for cost estimation decreases the average Q-error by even 12.6% over using unoptimized plans as input. Moreover, the proposed cross-engine optimizer reduces the total workload runtime by up to 25.2% in a zero-shot setting and 30.4% in a few-shot setting when compared to random routing.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.