Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Reachability Weighted Offline Goal-conditioned Resampling (2506.02577v1)

Published 3 Jun 2025 in cs.LG

Abstract: Offline goal-conditioned reinforcement learning (RL) relies on fixed datasets where many potential goals share the same state and action spaces. However, these potential goals are not explicitly represented in the collected trajectories. To learn a generalizable goal-conditioned policy, it is common to sample goals and state-action pairs uniformly using dynamic programming methods such as Q-learning. Uniform sampling, however, requires an intractably large dataset to cover all possible combinations and creates many unreachable state-goal-action pairs that degrade policy performance. Our key insight is that sampling should favor transitions that enable goal achievement. To this end, we propose Reachability Weighted Sampling (RWS). RWS uses a reachability classifier trained via positive-unlabeled (PU) learning on goal-conditioned state-action values. The classifier maps these values to a reachability score, which is then used as a sampling priority. RWS is a plug-and-play module that integrates seamlessly with standard offline RL algorithms. Experiments on six complex simulated robotic manipulation tasks, including those with a robot arm and a dexterous hand, show that RWS significantly improves performance. In one notable case, performance on the HandBlock-Z task improved by nearly 50 percent relative to the baseline. These results indicate the effectiveness of reachability-weighted sampling.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube