Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Bidirectional Soft Actor-Critic: Leveraging Forward and Reverse KL Divergence for Efficient Reinforcement Learning (2506.01639v1)

Published 2 Jun 2025 in cs.LG and cs.AI

Abstract: The Soft Actor-Critic (SAC) algorithm, a state-of-the-art method in maximum entropy reinforcement learning, traditionally relies on minimizing reverse Kullback-Leibler (KL) divergence for policy updates. However, this approach leads to an intractable optimal projection policy, necessitating gradient-based approximations that can suffer from instability and poor sample efficiency. This paper investigates the alternative use of forward KL divergence within SAC. We demonstrate that for Gaussian policies, forward KL divergence yields an explicit optimal projection policy -- corresponding to the mean and variance of the target Boltzmann distribution's action marginals. Building on the distinct advantages of both KL directions, we propose Bidirectional SAC, an algorithm that first initializes the policy using the explicit forward KL projection and then refines it by optimizing the reverse KL divergence. Comprehensive experiments on continuous control benchmarks show that Bidirectional SAC significantly outperforms standard SAC and other baselines, achieving up to a $30\%$ increase in episodic rewards, alongside enhanced sample efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube