Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

General-purpose audio representation learning for real-world sound scenes (2506.00934v1)

Published 1 Jun 2025 in cs.SD, cs.AI, and eess.AS

Abstract: While audio foundation models perform well on myriad of tasks from sound classification to speech analysis, these models are trained and tested on dry, non-spatial, single-source audio clips. This limits their success in real-world situations and results in spatially unaware audio embeddings. To address these limitations, we propose a novel self-supervised training approach for General-Purpose, Real-world Audio Models (GRAMs). The GRAM training approach enables robust spatial audio representation learning for naturalistic, noisy sound scenes and can be applied to any masking-based deep learning model. We demonstrate the success of our approach by training two state-of-the-art models, one with a transformer and one with a mamba backbone. We assess the quality of the extracted audio representations from GRAMs using the original version of the HEAR benchmark, a newly synthesized, naturalistic version of the HEAR benchmark, and novel sound localization tasks based on HEAR benchmark datasets. The results show that our approach minimizes the performance gap between dry, non-spatial, single-source sound scenes and naturalistic sound scenes for crucial tasks such as auditory scene analysis, outperforming existing state-of-the-art audio foundation models at a fraction of the training steps. Moreover, GRAMs show state-of-the-art performance on sound localization tasks, exceeding even supervised sound localization models. In sum, the proposed approach represents a significant advancement towards robust audio foundation models for real-world applications with state-of-the-art performance on naturalistic sound scenes as well as spatial audio representation learning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube