Generalizable LLM Learning of Graph Synthetic Data with Reinforcement Learning (2506.00845v2)
Abstract: Previous research has sought to enhance the graph reasoning capabilities of LLMs by supervised fine-tuning on synthetic graph data. While these led to specialized LLMs better at solving graph algorithm problems, we don't need LLMs for shortest path: we need generalization from synthetic graph data to real-world tasks with implicit graph structures. In this work, we propose to unlock generalizable learning of graph synthetic data with reinforcement learning. We first design solution-based and process-based rewards for synthetic graph problems: instead of rigid memorizing response patterns in direct fine-tuning, we posit that RL would help LLMs grasp the essentials underlying graph reasoning and alleviate overfitting. We employ RL algorithms such as GRPO and DPO, aligning both off-the-shelf LLMs and LLMs fine-tuned on synthetic graph data. We then compare them against existing settings on both in-domain synthetic tasks and out-of-domain real-world tasks with implicit graph structures such as multi-hop QA, structured planning, and more. Extensive experiments demonstrate that our RL recipe leads to statistically significant improvement on 5 datasets, with an average gain of 12.9\% over baseline settings. Further analysis reveals that process-based rewards consistently outperform solution-based rewards, mixing synthetic and real-world task data yields potential gains, while compositionality and explainable intermediate steps remains a critical challenge even after RL.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.