ORAN-GUIDE: RAG-Driven Prompt Learning for LLM-Augmented Reinforcement Learning in O-RAN Network Slicing (2506.00576v1)
Abstract: Advanced wireless networks must support highly dynamic and heterogeneous service demands. Open Radio Access Network (O-RAN) architecture enables this flexibility by adopting modular, disaggregated components, such as the RAN Intelligent Controller (RIC), Centralized Unit (CU), and Distributed Unit (DU), that can support intelligent control via ML. While deep reinforcement learning (DRL) is a powerful tool for managing dynamic resource allocation and slicing, it often struggles to process raw, unstructured input like RF features, QoS metrics, and traffic trends. These limitations hinder policy generalization and decision efficiency in partially observable and evolving environments. To address this, we propose \textit{ORAN-GUIDE}, a dual-LLM framework that enhances multi-agent RL (MARL) with task-relevant, semantically enriched state representations. The architecture employs a domain-specific LLM, ORANSight, pretrained on O-RAN control and configuration data, to generate structured, context-aware prompts. These prompts are fused with learnable tokens and passed to a frozen GPT-based encoder that outputs high-level semantic representations for DRL agents. This design adopts a retrieval-augmented generation (RAG) style pipeline tailored for technical decision-making in wireless systems. Experimental results show that ORAN-GUIDE improves sample efficiency, policy convergence, and performance generalization over standard MARL and single-LLM baselines.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.