Coherent functors, powers of ideals, and asymptotic stability (2506.00529v1)
Abstract: Let $R$ be a Noetherian ring, $I_1,\ldots,I_r$ be ideals of $R$, and $N\subseteq M$ be finitely generated $R$-modules. Let $S = \bigoplus_{\underline{n} \in \mathbb{N}r} S_{\underline{n}}$ be a Noetherian standard $\mathbb{N}r$-graded ring with $S_{\underline{0}} = R$, and $\mathcal{M} $ be a finitely generated $\mathbb{Z}r$-graded $S$-module. For $ \underline{n} = (n_1,\dots,n_r) \in \mathbb{N}r$, set $G_{\underline{n}} := \mathcal{M}{\underline{n}}$ or $G{\underline{n}} := M/{\bf I}{\underline{n}} N$, where ${\bf I}{\underline{n}} = I_1{n_1} \cdots I_r{n_r}$. Suppose $F$ is a coherent functor on the category of finitely generated $R$-modules. We prove that the set $\rm{Ass}R \big(F(G{\underline{n}}) \big)$ of associate primes and $\rm{grade}\big(J, F(G_{\underline{n}})\big)$ stabilize for all $\underline{n} \gg 0$, where $J$ is a non-zero ideal of $R$. Furthermore, if the length $\lambda_R(F(G_{\underline{n}}))$ is finite for all $\underline{n} \gg 0$, then there exists a polynomial $P$ in $r$ variables over $\mathbb{Q}$ such that $\lambda_R(F(G_{\underline{n}})) = P(\underline{n})$ for all $\underline{n}\gg 0$. When $R$ is a local ring, and $G_{\underline{n}} = M/{\bf I}{\underline{n}} N$, we give a sharp upper bound of the total degree of $P$. As applications, when $R$ is a local ring, we show that for each fixed $i \geq 0$, the $i$th Betti number $\beta_iR(F(G_{\underline{n}}))$ and Bass number $\mui_R(F(G_{\underline{n}}))$ are given by polynomials in $\underline{n}$ for all $\underline{n} \gg 0$. Thus, in particular, the projective dimension $\rm{pd}R(F(G{\underline{n}}))$ (resp., injective dimension $\rm{id}R(F(G{\underline{n}}))$) is constant for all $\underline{n}\gg 0$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.