Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

FLoE: Fisher-Based Layer Selection for Efficient Sparse Adaptation of Low-Rank Experts (2506.00495v1)

Published 31 May 2025 in cs.LG, cs.CL, and stat.ML

Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a widely adopted strategy for adapting pre-trained LLMs to downstream tasks, significantly reducing memory and computational costs. However, most existing PEFT techniques uniformly deploy LoRA adapters across all layers, disregarding the intrinsic heterogeneity of layer contributions and task-specific rank requirements. This uniform paradigm leads to redundant parameter allocation and suboptimal adaptation efficiency. To address these limitations, we propose FLoE, a novel PEFT framework that introduces two key innovations: (i) a Fisher information-guided importance scoring mechanism to dynamically identify task-critical transformer layers for MoE-based low-rank adaptation, enabling sparse adapter deployment; and (ii) a Bayesian optimization-driven rank allocator that automatically determines optimal LoRA ranks on specific datasets without exhaustive grid search. Extensive experiments across diverse LLMs and benchmarks reveal that FLoE achieves impressive efficiency-accuracy trade-offs, making FLoE particularly advantageous in resource-constrained environments that necessitate rapid adaptation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube