Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scaling Textual Gradients via Sampling-Based Momentum (2506.00400v1)

Published 31 May 2025 in cs.CL and cs.AI

Abstract: As prompts play an increasingly critical role in LLMs, optimizing textual prompts has become a crucial challenge. The Textual Gradient Descent (TGD) framework has emerged as a promising data-driven approach that iteratively refines textual prompts using LLM - suggested updates (or textual gradients) over minibatches of training samples. In this paper, we empirically demonstrate that scaling the number of training examples initially improves but later degrades TGD's performance across multiple downstream NLP tasks. However, while data scaling improves results for most tasks, it also significantly increases the computational cost when leveraging LLMs. To address this, we draw inspiration from numerical gradient descent and propose Textual Stochastic Gradient Descent with Momentum (TSGD-M) - a method that facilitates scalable in-context learning by reweighting prompt sampling based on past batch distributions. Across nine NLP tasks spanning three domains - including BIG-Bench Hard (BBH), natural language understanding tasks, and reasoning tasks - TSGD-M significantly outperforms TGD baselines that do not incorporate reweighted sampling, while also reducing variance in most tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.