Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Evaluating Prompt Engineering Techniques for Accuracy and Confidence Elicitation in Medical LLMs (2506.00072v1)

Published 29 May 2025 in cs.CY, cs.AI, cs.CL, and cs.LG

Abstract: This paper investigates how prompt engineering techniques impact both accuracy and confidence elicitation in LLMs applied to medical contexts. Using a stratified dataset of Persian board exam questions across multiple specialties, we evaluated five LLMs - GPT-4o, o3-mini, Llama-3.3-70b, Llama-3.1-8b, and DeepSeek-v3 - across 156 configurations. These configurations varied in temperature settings (0.3, 0.7, 1.0), prompt styles (Chain-of-Thought, Few-Shot, Emotional, Expert Mimicry), and confidence scales (1-10, 1-100). We used AUC-ROC, Brier Score, and Expected Calibration Error (ECE) to evaluate alignment between confidence and actual performance. Chain-of-Thought prompts improved accuracy but also led to overconfidence, highlighting the need for calibration. Emotional prompting further inflated confidence, risking poor decisions. Smaller models like Llama-3.1-8b underperformed across all metrics, while proprietary models showed higher accuracy but still lacked calibrated confidence. These results suggest prompt engineering must address both accuracy and uncertainty to be effective in high-stakes medical tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.