Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

On Symmetric Losses for Robust Policy Optimization with Noisy Preferences (2505.24709v1)

Published 30 May 2025 in cs.LG and cs.AI

Abstract: Optimizing policies based on human preferences is key to aligning LLMs with human intent. This work focuses on reward modeling, a core component in reinforcement learning from human feedback (RLHF), and offline preference optimization, such as direct preference optimization. Conventional approaches typically assume accurate annotations. However, real-world preference data often contains noise due to human errors or biases. We propose a principled framework for robust policy optimization under noisy preferences, viewing reward modeling as a classification problem. This allows us to leverage symmetric losses, known for their robustness to label noise in classification, leading to our Symmetric Preference Optimization (SymPO) method. We prove that symmetric losses enable successful policy optimization even under noisy labels, as the resulting reward remains rank-preserving -- a property sufficient for policy improvement. Experiments on synthetic and real-world tasks demonstrate the effectiveness of SymPO.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.