Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Large Language Model-Based Agents for Automated Research Reproducibility: An Exploratory Study in Alzheimer's Disease (2505.23852v1)

Published 29 May 2025 in cs.CL, cs.AI, cs.MA, and stat.AP

Abstract: Objective: To demonstrate the capabilities of LLMs as autonomous agents to reproduce findings of published research studies using the same or similar dataset. Materials and Methods: We used the "Quick Access" dataset of the National Alzheimer's Coordinating Center (NACC). We identified highly cited published research manuscripts using NACC data and selected five studies that appeared reproducible using this dataset alone. Using GPT-4o, we created a simulated research team of LLM-based autonomous agents tasked with writing and executing code to dynamically reproduce the findings of each study, given only study Abstracts, Methods sections, and data dictionary descriptions of the dataset. Results: We extracted 35 key findings described in the Abstracts across 5 Alzheimer's studies. On average, LLM agents approximately reproduced 53.2% of findings per study. Numeric values and range-based findings often differed between studies and agents. The agents also applied statistical methods or parameters that varied from the originals, though overall trends and significance were sometimes similar. Discussion: In some cases, LLM-based agents replicated research techniques and findings. In others, they failed due to implementation flaws or missing methodological detail. These discrepancies show the current limits of LLMs in fully automating reproducibility assessments. Still, this early investigation highlights the potential of structured agent-based systems to provide scalable evaluation of scientific rigor. Conclusion: This exploratory work illustrates both the promise and limitations of LLMs as autonomous agents for automating reproducibility in biomedical research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube