Voice Adaptation for Swiss German (2505.22054v1)
Abstract: This work investigates the performance of Voice Adaptation models for Swiss German dialects, i.e., translating Standard German text to Swiss German dialect speech. For this, we preprocess a large dataset of Swiss podcasts, which we automatically transcribe and annotate with dialect classes, yielding approximately 5000 hours of weakly labeled training material. We fine-tune the XTTSv2 model on this dataset and show that it achieves good scores in human and automated evaluations and can correctly render the desired dialect. Our work shows a step towards adapting Voice Cloning technology to underrepresented languages. The resulting model achieves CMOS scores of up to -0.28 and SMOS scores of 3.8.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.