Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Revisiting Bayesian Model Averaging in the Era of Foundation Models (2505.21857v1)

Published 28 May 2025 in cs.LG and stat.ML

Abstract: We revisit the classical, full-fledged Bayesian model averaging (BMA) paradigm to ensemble pre-trained and/or lightly-finetuned foundation models to enhance the classification performance on image and text data. To make BMA tractable under foundation models, we introduce trainable linear classifiers that take frozen features from the pre-trained foundation models as inputs. The model posteriors over the linear classifiers tell us which linear heads and frozen features are better suited for a given dataset, resulting in a principled model ensembling method. Furthermore, we propose a computationally cheaper, optimizable model averaging scheme (OMA). In OMA, we directly optimize the model ensemble weights, just like those weights based on model posterior distributions in BMA, by reducing the amount of surprise (expected entropy of the predictions) we get from predictions of ensembled models. With the rapid development of foundation models, these approaches will enable the incorporation of future, possibly significantly better foundation models to enhance the performance of challenging classification tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com