Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Physics-Informed Learning Framework to Solve the Infinite-Horizon Optimal Control Problem (2505.21842v1)

Published 28 May 2025 in eess.SY, cs.LG, and cs.SY

Abstract: We propose a physics-informed neural networks (PINNs) framework to solve the infinite-horizon optimal control problem of nonlinear systems. In particular, since PINNs are generally able to solve a class of partial differential equations (PDEs), they can be employed to learn the value function of the infinite-horizon optimal control problem via solving the associated steady-state Hamilton-Jacobi-BeLLMan (HJB) equation. However, an issue here is that the steady-state HJB equation generally yields multiple solutions; hence if PINNs are directly employed to it, they may end up approximating a solution that is different from the optimal value function of the problem. We tackle this by instead applying PINNs to a finite-horizon variant of the steady-state HJB that has a unique solution, and which uniformly approximates the optimal value function as the horizon increases. An algorithm to verify if the chosen horizon is large enough is also given, as well as a method to extend it -- with reduced computations and robustness to approximation errors -- in case it is not. Unlike many existing methods, the proposed technique works well with non-polynomial basis functions, does not require prior knowledge of a stabilizing controller, and does not perform iterative policy evaluations. Simulations are performed, which verify and clarify theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube