Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pioneering 4-Bit FP Quantization for Diffusion Models: Mixup-Sign Quantization and Timestep-Aware Fine-Tuning (2505.21591v1)

Published 27 May 2025 in cs.LG and cs.AI

Abstract: Model quantization reduces the bit-width of weights and activations, improving memory efficiency and inference speed in diffusion models. However, achieving 4-bit quantization remains challenging. Existing methods, primarily based on integer quantization and post-training quantization fine-tuning, struggle with inconsistent performance. Inspired by the success of floating-point (FP) quantization in LLMs, we explore low-bit FP quantization for diffusion models and identify key challenges: the failure of signed FP quantization to handle asymmetric activation distributions, the insufficient consideration of temporal complexity in the denoising process during fine-tuning, and the misalignment between fine-tuning loss and quantization error. To address these challenges, we propose the mixup-sign floating-point quantization (MSFP) framework, first introducing unsigned FP quantization in model quantization, along with timestep-aware LoRA (TALoRA) and denoising-factor loss alignment (DFA), which ensure precise and stable fine-tuning. Extensive experiments show that we are the first to achieve superior performance in 4-bit FP quantization for diffusion models, outperforming existing PTQ fine-tuning methods in 4-bit INT quantization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube