Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CROP: Contextual Region-Oriented Visual Token Pruning (2505.21233v1)

Published 27 May 2025 in cs.CV

Abstract: Current VLM-based VQA methods often process entire images, leading to excessive visual tokens that include redundant information irrelevant to the posed question. This abundance of unnecessary image details creates numerous visual tokens, drastically increasing memory and computational requirements in VLMs. To address this, we propose Contextual Region-Oriented Visual Token Pruning (CROP), a novel framework to compress visual tokens through a two-step process: Localization and Pruning. Specifically, CROP first employs an efficient model to identify the contextual region relevant to the input query. Subsequently, two distinct strategies are introduced for pruning: (1) Pre-LLM Compression (PLC), which adaptively compresses different image regions with varying ratios, and (2) Inner-LLM Pruning (ILP), a training-free method that prunes tokens within early LLM layers guided by the identified contextual region. Extensive experiments on a wide range of VQA tasks demonstrate that CROP significantly outperforms existing visual token pruning methods and achieves state-of-the-art performance. Our code and datasets will be made available.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.