Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Interpreting Social Bias in LVLMs via Information Flow Analysis and Multi-Round Dialogue Evaluation (2505.21106v1)

Published 27 May 2025 in cs.AI

Abstract: Large Vision LLMs (LVLMs) have achieved remarkable progress in multimodal tasks, yet they also exhibit notable social biases. These biases often manifest as unintended associations between neutral concepts and sensitive human attributes, leading to disparate model behaviors across demographic groups. While existing studies primarily focus on detecting and quantifying such biases, they offer limited insight into the underlying mechanisms within the models. To address this gap, we propose an explanatory framework that combines information flow analysis with multi-round dialogue evaluation, aiming to understand the origin of social bias from the perspective of imbalanced internal information utilization. Specifically, we first identify high-contribution image tokens involved in the model's reasoning process for neutral questions via information flow analysis. Then, we design a multi-turn dialogue mechanism to evaluate the extent to which these key tokens encode sensitive information. Extensive experiments reveal that LVLMs exhibit systematic disparities in information usage when processing images of different demographic groups, suggesting that social bias is deeply rooted in the model's internal reasoning dynamics. Furthermore, we complement our findings from a textual modality perspective, showing that the model's semantic representations already display biased proximity patterns, thereby offering a cross-modal explanation of bias formation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube