Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Unveiling Impact of Frequency Components on Membership Inference Attacks for Diffusion Models (2505.20955v1)

Published 27 May 2025 in cs.CR and cs.LG

Abstract: Diffusion models have achieved tremendous success in image generation, but they also raise significant concerns regarding privacy and copyright issues. Membership Inference Attacks (MIAs) are designed to ascertain whether specific data were utilized during a model's training phase. As current MIAs for diffusion models typically exploit the model's image prediction ability, we formalize them into a unified general paradigm which computes the membership score for membership identification. Under this paradigm, we empirically find that existing attacks overlook the inherent deficiency in how diffusion models process high-frequency information. Consequently, this deficiency leads to member data with more high-frequency content being misclassified as hold-out data, and hold-out data with less high-frequency content tend to be misclassified as member data. Moreover, we theoretically demonstrate that this deficiency reduces the membership advantage of attacks, thereby interfering with the effective discrimination of member data and hold-out data. Based on this insight, we propose a plug-and-play high-frequency filter module to mitigate the adverse effects of the deficiency, which can be seamlessly integrated into any attacks within this general paradigm without additional time costs. Extensive experiments corroborate that this module significantly improves the performance of baseline attacks across different datasets and models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube