Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Feature-level Bias Evaluation Framework for Facial Expression Recognition Models (2505.20512v1)

Published 26 May 2025 in cs.CV

Abstract: Recent studies on fairness have shown that Facial Expression Recognition (FER) models exhibit biases toward certain visually perceived demographic groups. However, the limited availability of human-annotated demographic labels in public FER datasets has constrained the scope of such bias analysis. To overcome this limitation, some prior works have resorted to pseudo-demographic labels, which may distort bias evaluation results. Alternatively, in this paper, we propose a feature-level bias evaluation framework for evaluating demographic biases in FER models under the setting where demographic labels are unavailable in the test set. Extensive experiments demonstrate that our method more effectively evaluates demographic biases compared to existing approaches that rely on pseudo-demographic labels. Furthermore, we observe that many existing studies do not include statistical testing in their bias evaluations, raising concerns that some reported biases may not be statistically significant but rather due to randomness. To address this issue, we introduce a plug-and-play statistical module to ensure the statistical significance of biased evaluation results. A comprehensive bias analysis based on the proposed module is then conducted across three sensitive attributes (age, gender, and race), seven facial expressions, and multiple network architectures on a large-scale dataset, revealing the prominent demographic biases in FER and providing insights on selecting a fairer network architecture.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.