Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Editing as Unlearning: Are Knowledge Editing Methods Strong Baselines for Large Language Model Unlearning? (2505.19855v1)

Published 26 May 2025 in cs.LG

Abstract: LLM unlearning, i.e., selectively removing information from LLMs, is vital for responsible model deployment. Differently, LLM knowledge editing aims to modify LLM knowledge instead of removing it. Though editing and unlearning seem to be two distinct tasks, we find there is a tight connection between them. In this paper, we conceptualize unlearning as a special case of editing where information is modified to a refusal or "empty set" $\emptyset$ response, signifying its removal. This paper thus investigates if knowledge editing techniques are strong baselines for LLM unlearning. We evaluate state-of-the-art (SOTA) editing methods (e.g., ROME, MEMIT, GRACE, WISE, and AlphaEdit) against existing unlearning approaches on pretrained and finetuned knowledge. Results show certain editing methods, notably WISE and AlphaEdit, are effective unlearning baselines, especially for pretrained knowledge, and excel in generating human-aligned refusal answers. To better adapt editing methods for unlearning applications, we propose practical recipes including self-improvement and query merging. The former leverages the LLM's own in-context learning ability to craft a more human-aligned unlearning target, and the latter enables ROME and MEMIT to perform well in unlearning longer sample sequences. We advocate for the unlearning community to adopt SOTA editing methods as baselines and explore unlearning from an editing perspective for more holistic LLM memory control.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.