Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

UNCERTAINTY-LINE: Length-Invariant Estimation of Uncertainty for Large Language Models (2505.19060v1)

Published 25 May 2025 in cs.CL

Abstract: LLMs have become indispensable tools across various applications, making it more important than ever to ensure the quality and the trustworthiness of their outputs. This has led to growing interest in uncertainty quantification (UQ) methods for assessing the reliability of LLM outputs. Many existing UQ techniques rely on token probabilities, which inadvertently introduces a bias with respect to the length of the output. While some methods attempt to account for this, we demonstrate that such biases persist even in length-normalized approaches. To address the problem, here we propose UNCERTAINTY-LINE: (Length-INvariant Estimation), a simple debiasing procedure that regresses uncertainty scores on output length and uses the residuals as corrected, length-invariant estimates. Our method is post-hoc, model-agnostic, and applicable to a range of UQ measures. Through extensive evaluation on machine translation, summarization, and question-answering tasks, we demonstrate that UNCERTAINTY-LINE: consistently improves over even nominally length-normalized UQ methods uncertainty estimates across multiple metrics and models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.