Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Protein Design with Dynamic Protein Vocabulary (2505.18966v1)

Published 25 May 2025 in cs.LG, cs.AI, and q-bio.BM

Abstract: Protein design is a fundamental challenge in biotechnology, aiming to design novel sequences with specific functions within the vast space of possible proteins. Recent advances in deep generative models have enabled function-based protein design from textual descriptions, yet struggle with structural plausibility. Inspired by classical protein design methods that leverage natural protein structures, we explore whether incorporating fragments from natural proteins can enhance foldability in generative models. Our empirical results show that even random incorporation of fragments improves foldability. Building on this insight, we introduce ProDVa, a novel protein design approach that integrates a text encoder for functional descriptions, a protein LLM for designing proteins, and a fragment encoder to dynamically retrieve protein fragments based on textual functional descriptions. Experimental results demonstrate that our approach effectively designs protein sequences that are both functionally aligned and structurally plausible. Compared to state-of-the-art models, ProDVa achieves comparable function alignment using less than 0.04% of the training data, while designing significantly more well-folded proteins, with the proportion of proteins having pLDDT above 70 increasing by 7.38% and those with PAE below 10 increasing by 9.6%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 7 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube