Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

SLearnLLM: A Self-Learning Framework for Efficient Domain-Specific Adaptation of Large Language Models (2505.17470v1)

Published 23 May 2025 in cs.CL and cs.AI

Abstract: When using supervised fine-tuning (SFT) to adapt LLMs to specific domains, a significant challenge arises: should we use the entire SFT dataset for fine-tuning? Common practice often involves fine-tuning directly on the entire dataset due to limited information on the LLM's past training data. However, if the SFT dataset largely overlaps with the model's existing knowledge, the performance gains are minimal, leading to wasted computational resources. Identifying the unknown knowledge within the SFT dataset and using it to fine-tune the model could substantially improve the training efficiency. To address this challenge, we propose a self-learning framework for LLMs inspired by human learning pattern. This framework takes a fine-tuning (SFT) dataset in a specific domain as input. First, the LLMs answer the questions in the SFT dataset. The LLMs then objectively grade the responses and filter out the incorrectly answered QA pairs. Finally, we fine-tune the LLMs based on this filtered QA set. Experimental results in the fields of agriculture and medicine demonstrate that our method substantially reduces training time while achieving comparable improvements to those attained with full dataset fine-tuning. By concentrating on the unknown knowledge within the SFT dataset, our approach enhances the efficiency of fine-tuning LLMs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube